Response of forest birds to partial harvesting

Jean-François Poulin, Marc-André Villard and Samuel Haché

Canada Research Chair in Landscape Conservation

Introduction

- Social pressure
 - Biodiversity conservation, moderate intensity harvesting procedures

Introduction

Low-intensity harvest treatments may maintain habitat for some species (Gram et al. 2003, Holmes & Pitt 2007)

Many songbirds and woodpecker species still sensitive to such treatments (Doyon et al. 2005;

Guénette & Villard 2005; Holmes & Pitt 2007)

Introduction

• How much habitat is enough ?

 How many species need to be conserved ?

Focal species

Brown Creeper and Ovenbird

- Two of the most sensitive forest bird species to partial harvesting in North America (Vanderwel et al. 2007)
- Strongly associated with mature and old growth stands

Objectives

Objective 1.

Identify key habitat variables in nest site selection and nesting success

 Quantify the demographic response of two forest birds to experimental single-tree selection harvesting

Study area

Private lands :
J.D. Irving Ltd.
Acadian Timber Inc.

Objective 1

Nest site selection and Nesting success

Nest site selection

- Habitat selection of the Brown Creeper
 - Comparison between nesting and unused sites – Radius of 80 and 250 m
- Habitat characterisation at both scales
 - Forest inventory
 - GIS forest layer
- Discriminant function analysis and ROC curves

Variables selected

Mod	lel	Variables		
Full	D_Large + D_	D_Large + D_Snags + Pot_nest + Mature		
Terr	itory D_Large + D_	D_Large + D_Snags + Pot_nest		
Mes	o Mature	Mature		
	Isolated component	of variation % of total	variation explained	
	Pure (Territory)		30.3	
	Pure (Meso)		1.9	
	Shared (Territory + M	leso)	10.4	

Threshold: large trees

Threshold: 127 large trees/ha

Threshold: area of mature forest

Reminder

• Large trees

- Abundance of invertebrates increase with

diameter (Jackson 1979; Mariani & Manuwal 1990)

- Snags
 - Nesting substrate : important because 50 % of failure per nesting attempt
 - Re-nesting

Reminder

- Patch of at least 11 ha of untreated mature forest
 - Link to the high requirements at the centre of the territory
 - Importance for other species ?

Nesting success

 Comparison of habitat characteristic between successful and unsuccessful nesting attempts

• Radius of 141, 500, 1 000 and 2 000 m

- Screening of variables using a discriminant function analysis
- Logistic regressions and AIC model selection with selected variables

Variables selected

- Year (Y)
- Mean patch size in a radius of 141 m (M141)
- Area of non-forested land (ex.: roads) in a radius of 141 m (NF)
- Distance of the nest from the forest edge (E)
- Area of crop-producing spruce plantations in a radius of 2 km (PL)

Variables selected

	Mean (SD)				
Variables	Successful nests (n=31)	Unsuccessful nests (n=23)			
Y	n/a	n/a			
M141 (ha)	4.15 (2.33)	3.61 (2.25)			
NF (ha)	0.08 (0.13)	0.21 (0.38)			
E (m)	147.84 (104.32)	109.91 (67.72)			
PL (ha)	233.74 (191.93)	291.26 (175.94)			

Models retained

Model ^a	Kb	Log- likelihood	AIC _c	ΔAIC _c	w _i	R ²
Y+PL+E	4	-31.94	72.69	0.00	0.19	0.223
Y+NF+PL	4	-32.37	73.56	0.86	0.13	0.205
Y+M141+PL	4	-32.39	73.60	0.91	0.12	0.204
E+PL	3	-33.64	73.75	1.06	0.11	0.150
E+NF+PL	4	-32.48	73.78	1.09	0.11	0.200
NF+PL	3	-33.85	74.18	1.49	0.09	0.141
NF	2	-35.02	74.28	1.58	0.09	0.087
Y+M141+NF+PL	5	-31.57	74.40	1.70	0.08	0.238
Y+NF	3	-34.11	74.69	2.00	0.07	0.129

Keys to success...

- Large patch size

 Lower nest visibility ?
- Higher distance to the edge
 Edge effect, predator movements ?
- Lesser plantation in the landscape
 Effect on predator population (red squirrel) ?

Depending of the year...

Objective 2

Effect of single-tree selection harvesting

Experimental design

1 site treated per pair : single-tree selection harvesting

Variables measured

- Monitoring of all the territories inside each plot;
- Nest searching;
- Monitoring of the fate of each territory;
- % of ovenbird male return;
- % of recruits ovenbird in the population;

Density

Recruitment

Creeper's response

- Negative impact on nest density
 - Less nesting substrate
 - Less foraging substrate
- Less success
 - Only in 2007 :
 - Higher abundance of predators
 - Higher visibility ?

Ovenbird demography

- Single-tree selection harvesting definitely alters Ovenbird demography
 - Most survivors tend to return, even to treated plots
 - Non-returning males are replaced, but recruitment lower (in absolute terms) in treated plots

Large patch of mature forest + riparian buffer

Multi-scale concept

- Conserving micro-habitat feature within harvested stands
 Retention patch
- Conserving macro-habitat feature in the landscape

- Spatial arrangement of harvested stands

Large core of mature forest (reserve)

Financial partners

ACADIANTIMBER

UNIVERSITÉ DE MONCTON CAMPUS DE MONCTON

Questions?

